More clustering algorithms

Lecture 05.02

Clustering algorithms

- **V** *• K*-means clustering
 - Agglomerative hierarchical clustering
 - Density-based clustering

Clustering algorithms

- *K*-means clustering
- Agglomerative hierarchical clustering
 - Density-based clustering

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a *dendrogram*
 - A tree-like diagram that records the sequences of merges or splits

Strengths of hierarchical clustering

- Do not have to assume any particular number of clusters
 - 'cut' the dendogram at the proper level

Types of hierarchical clustering

Agglomerative – starts with each point as a cluster, and performs successive merges

 Divisive – starts with all points as a cluster and performs successive splits

Hierarchical Clustering Algorithm

- Start with the points as individual clusters
- At each step, merge the closest pair of clusters until only one cluster left.

Hierarchical Clustering Algorithm

Let each data point be a cluster

Compute the proximity matrix

Repeat

Merge the two closest clusters Update the proximity matrix **Until** only a single cluster remains

 Key operation is the computation of the proximity of two clusters.

Starting Situation

 Start with clusters of individual points and a proximity matrix

 p1 | p2 | p3 | p4 | p5 | ...

Proximity Matrix

Intermediate Situation

• After some merging steps, we have some clusters

C5

C1

C2

Proximity Matrix

Intermediate Situation

• We want to merge the two closest clusters (C2 and C5) and update the proximity matrix. _____ c1 | c2 | c3 | c4 | c5 |

After Merging

• The question is "How do we update the proximity $\mathcal{S}_{\mathcal{O}}$ matrix?"

C2 U C5

C1

?

?

?

C3

?

C4

?

How to Define Inter-Cluster Distance

	p1	p2	р3	p4	p5	<u>.</u>
p1						
p2						
р3						
р4						
р5						
•						

- MIN
- MAX
- Centroids Distance
- Group Average

Proximity Matrix

.

Inter-Cluster Distance: MIN

	p1	p2	р3	p4	р5	<u>.</u>
p1						
p2						
р3						
р4						
р5						
•						

Proximity Matrix

Problem: sensitive to outliers

Inter-Cluster Distance: MAX

	p1	p2	р3	p4	р5	<u>.</u>
p1						
p2						
р3						
p4						
р5						
•						

Proximity Matrix

Problem: tends to break large clusters

Inter-Cluster Distance: Centroid distance

Proximity Matrix

Inter-Cluster Distance: Group Average

	p1	p2	р3	p4	р5	<u>.</u>
p1						
p2						
р3						
р4						
р5						
•						

Proximity Matrix

Cluster Distance: MIN (single link)

 Distance between two clusters is based on the two most similar (closest) points in the different clusters

 Determined by one pair of points

	p1	p2	p3	p4	p5	$\mathbf{p6}$
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
p3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

d(C1,C2)=0.15

Hierarchical Clustering: MIN

Nested Clusters

Dendrogram

Cluster Distance: MAX

- Distance between two clusters is based on the two least similar (most distant) points in the different clusters
 - Determined by one pair of points

	p1	p2	p3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
p3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

d(C1,C2)=0.39

Hierarchical Clustering: MAX

Nested Clusters

Dendrogram

Hierarchical clustering: Group Average

• Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum_{\substack{p_i \in Cluster_i \\ p_j \in Cluster_j}} \sum_{\substack{p_i \in Cluster_j \\ P_j \in Cluster$$

- uses all pairs of points from two clusters

Cluster distance: Group Average

Nested Clusters

Dendrogram

Cluster Distance: Centroid distance

- Distance between two clusters is based on the distance between their centroids
 - Determined by all points in each cluster

Cluster distance: Centroid distance

Nested Clusters

Dendrogram

5

1

Hierarchical Clustering: Time and Space

- O(N²) space since it uses the proximity matrix.
 N is the number of points.
- O(N³) time in many cases
 - There are N steps and at each step the size, N², proximity matrix must be updated and searched
 - Complexity can be reduced to O(N² log(N)) time using more advanced data structures

Hierarchical clustering is expensive !

Example: clustering people by age

- Example in one dimension (to skip proximity matrix computation)
- The data consists of the ages of people at a family gathering.
- The goal is to cluster participants by age
- The distance between people is the difference in their ages.
- The procedure: sort participants by age, then begin clustering the closest groups

Distance 3

Distance 6

3 groups detected

Final dendrogram

Hierarchical clustering application: evolution of Canidae

Giant Panda is a bear

Hierarchical clustering application: languages evolution

From

"Indo-European languages tree by Levenshtein distance" by M. Serval and F. Petroni

Hierarchical clustering application: languages evolution

Clustering algorithms

- **V** *• K*-means clustering
- ▼● Agglomerative hierarchical clustering
- Density-based clustering

Types of Clusters: Density-Based

- Clusters are defined as dense regions of objects in the data space that are separated by regions of low density (representing noise)
- To discover such clusters we need special algorithms

6 density-based clusters

DBSCAN - Density-Based Spatial Clustering of Applications with Noise

New definitions

- The neighborhood within a radius ε of a given object is called the *ε-neighborhood* of the object
- If the ε-neighborhood of an object contains at least a minimum number *MinPts* of objects, then such an object is called a core point

DBSCAN - Density-Based Spatial Clustering of Applications with Noise New definitions

- We say that object p is directly reachable from object q if p is within ε-neighborhood of q, and q is a core point
- A border point has fewer than *MinPts* objects in its εneighborhood , but is directly reachable from some core point
- A **noise point** is any point that is neither a core point nor a border point.

M, P, O and R are core points, since each contains at least 3 points in its ϵ -neighborhood

Q is directly density-reachable from M, M is directly density reachable from P, and P is directly density-reachable from M

S is directly density-reachable from O, T is indirectly densityreachable from O, and T is directly density-reachable from R

O, R, S, T are density-connected

Density-based cluster

 A density-based cluster is a set of density-connected objects that is maximal with respects to densityreachability

DBSCAN algorithm

- 1. Check ε-neighborhood of each point and label each point as core, border, or noise point
- 2. Eliminate noise points
- 3. Combine all core points which are densityreachable into a single cluster
- 4. Assign each border point to one of the clusters of its associated core points

When DBSCAN Works Well

Original Points

Clusters

- Resistant to Noise
- Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well

Why DBSCAN doesn't work well here?

Selecting ϵ and MinPts

- If the radius is too large, than all points are core points
- If the radius is too small, then all points are outliers

Method for selecting DBSCAN parameters

- Decide how many points you want in a dense region: MinPts. Suppose we want core points to have at least k ε-neighbors
- Determine the distance from each point to its k-th nearest neighbor, called the kdist.
- For points that belong to some cluster, the value of kdist will be small [if k is not larger than the cluster size].
- However, for points that are not in a cluster, such as noise points, the kdist will be relatively large.

Method for selecting DBSCAN parameters

- So, if we compute the kdist for all the data points for some k, sort them in increasing order, and then plot the sorted values, we expect to see a sharp change at the value of kdist that corresponds to a suitable value of ε.
- If we select this dividing distance as the ε parameter and take the value of k as the MinPts parameter, then points for which kdist is less than ε will be labeled as core points, while other points will be labeled as noise or border points.
- If there is no sharp change in distance then
 - the entire dataset is a noise, or
 - change value of k

DBSCAN: Determining EPS and MinPts

- E determined in this way depends on *k*, but does not change dramatically as *k* changes.
- If k is too small ?

then even a small number of closely spaced points that are noise or outliers will be incorrectly labeled as clusters.

• If k is too large ?

then small clusters (of size less than k) are likely to be labeled as noise.

 Original DBSCAN used k = 4, which appears to be a reasonable value for most data sets.