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Clustering algorithms

• K-means clustering

• Agglomerative hierarchical clustering

• Density-based clustering



Hierarchical Clustering 
• Produces a set of nested clusters organized as 

a hierarchical tree

• Can be visualized as a dendrogram

– A tree-like diagram that records the sequences of 
merges or splits
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Strengths of hierarchical clustering

• Do not have to assume any particular number 
of clusters

– ‘cut’ the dendogram at the proper level

8 clusters4 clusters2 clusters



Types of hierarchical clustering

• Agglomerative – starts with each point as a 
cluster, and performs successive merges

• Divisive – starts with all points as a cluster and 
performs successive splits



Hierarchical clustering example
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Hierarchical Clustering Algorithm

• Start with the points as individual clusters

• At each step, merge the closest pair of clusters until 
only one cluster left.



Hierarchical Clustering Algorithm

Let each data point be a cluster

Compute the proximity matrix

Repeat

Merge the two closest clusters

Update the proximity matrix

Until only a single cluster remains

• Key operation is the computation of the proximity of 
two clusters.



Starting Situation 
• Start with clusters of individual points and a proximity 

matrix
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Intermediate Situation
• After some merging steps, we have some clusters 
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Intermediate Situation
• We want to merge the two closest clusters (C2 and C5)  

and update the proximity matrix. 
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After Merging
• The question is “How do we update the proximity 

matrix?”
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How to Define Inter-Cluster Distance
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Inter-Cluster Distance: MIN
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Inter-Cluster Distance: MAX
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Inter-Cluster Distance: Centroid distance
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Inter-Cluster Distance: Group Average
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Cluster Distance: MIN (single link)

• Distance between two clusters is based on the two 
most similar (closest) points in the different clusters

– Determined by one pair of points

C1

C2

d(C1,C2)=0.15



Hierarchical Clustering: MIN

Nested Clusters Dendrogram
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Cluster Distance: MAX
• Distance between two clusters is based on the two 

least similar (most distant) points in the different 
clusters

– Determined by one pair of points

d(C1,C2)=0.39
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Hierarchical Clustering: MAX

Nested Clusters Dendrogram
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Hierarchical clustering: Group Average

• Proximity of two clusters is the average of pairwise 
proximity between points in the two clusters.
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– uses all pairs of points from two clusters



Cluster distance: Group Average

Nested Clusters Dendrogram
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Cluster Distance: Centroid distance
• Distance between two clusters is based on the 

distance between their centroids

– Determined by all points in each cluster



Cluster distance: Centroid distance

Nested Clusters Dendrogram
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Hierarchical Clustering:  Time and Space

• O(N2) space since it uses the proximity matrix.  

– N is the number of points.

• O(N3) time in many cases

– There are N steps and at each step the size, N2, 
proximity matrix must be updated and searched

– Complexity can be reduced to O(N2 log(N) ) time 
using more advanced data structures

Hierarchical clustering is expensive !



Example: clustering people by age

• Example in one dimension (to skip proximity matrix 
computation)

• The data consists of the ages of people at a family 
gathering. 

• The goal is to cluster participants by age

• The distance between people is the difference in 
their ages.

• The procedure: sort participants by age, then begin 
clustering the closest groups
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1 3 5 8 9 11 12 13 37 43 45 49 51 65

3 groups detected



1 3 5 8 9 11 12 13 37 43 45 49 51 65

Final dendrogram



Hierarchical clustering application: 
evolution of Canidae



Giant Panda is a bear



Hierarchical clustering application: 
languages evolution

From
“Indo-European languages tree 
by Levenshtein distance”
by M. Serval and F. Petroni



Hierarchical clustering application: 
languages evolution



Clustering algorithms

• K-means clustering

• Agglomerative hierarchical clustering

• Density-based clustering
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Types of Clusters: Density-Based

• Clusters are defined as dense regions of objects in the data 
space that are separated by regions of low density 
(representing noise)

• To discover such clusters we need special algorithms

6 density-based clusters



DBSCAN - Density-Based Spatial 
Clustering of Applications with Noise

New definitions
• The neighborhood within a radius ε of a given object is called 

the ε-neighborhood of the object

• If the ε-neighborhood of an object contains at least a 
minimum number MinPts of objects, then such an object is 
called a core point



DBSCAN - Density-Based Spatial 
Clustering of Applications with Noise

New definitions

• We say that object p is directly reachable from object q if p is 
within ε-neighborhood of q, and q is a core point

• A border point has fewer than MinPts objects in its ε-
neighborhood , but is directly reachable from some core 
point

• A noise point is any point that is neither a core point nor a 
border point. 



Definitions: example: MinPts=3
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M, P, O and R are core points, since each contains at least 3 
points in its ε-neighborhood



Definitions: example: MinPts=3
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Q is directly density-reachable from M, M is directly density 
reachable from P, and P is directly density-reachable from M



Definitions: example: MinPts=3
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S is directly density-reachable from O, T is indirectly density-
reachable from O, and T is directly density-reachable from R

T



Definitions: example: MinPts=3
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Density-based cluster

• A density-based cluster is a set of density-connected 
objects that is maximal with respects to density-
reachability



DBSCAN algorithm

1. Check ε-neighborhood of each point and label each 
point as core, border, or noise point

2. Eliminate noise points

3. Combine all core points which are density-
reachable into a single cluster

4. Assign each border point to one of the clusters of its 
associated core points



When DBSCAN Works Well

Original Points Clusters

• Resistant to Noise

• Can handle clusters of different shapes and sizes



When DBSCAN Does NOT Work Well

Why DBSCAN doesn’t work well here?



Selecting ε and MinPts

• If the radius is too large, than all points are core 
points

• If the radius is too small, then all points are outliers



Method for selecting DBSCAN 
parameters

• Decide how many points you want in a dense 
region: MinPts. Suppose we want core points to 
have at least k ε-neighbors

• Determine the distance from each point to its k-th
nearest neighbor, called the kdist. 

• For points that belong to some cluster, the value of 
kdist will be small [if k is not larger than the cluster 
size]. 

• However, for points that are not in a cluster, such as 
noise points, the kdist will be relatively large. 



Method for selecting DBSCAN 
parameters

• So, if we compute the kdist for all the data points for some k, sort 
them in increasing order, and then plot the sorted values, we 
expect to see a sharp change at the value of kdist that 
corresponds to a suitable value of ε. 

• If we select this dividing distance as the ε parameter and take the 
value of k as the MinPts parameter, then points for which kdist is 
less than ε will be labeled as core points, while other points will 
be labeled as noise or border points. 

• If there is no sharp change in distance then

– the entire dataset is a noise, or

– change value of k



DBSCAN: Determining EPS and MinPts

• Ε determined in this way depends on k, but does not change dramatically as k
changes. 

• If k is too small ?

then even a small number of closely spaced points that are noise or outliers will 
be incorrectly labeled as clusters. 

• If k is too large ?

then small clusters (of size less than k) are likely to be labeled as noise. 

• Original DBSCAN used k = 4, which appears to be a reasonable value for most 
data sets. 

Use distance 10 to 
separate clusters from 
noise


